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ABSTRACT

This work is a study of two topics in the development of an extensible
programming language, i.e., a high level language with powerful defi-
nitional facilities so designed that the language can be extended and
thereby tailored for use in a wide variety of computer applications.
The first topic is a theoretical treatment of an extension facility for
syntax. It generalizes the notion of context-free grammars to allow
the syntax of a language to be a function of its generated strings. It
studies the formal properties of such grammars and presents an
efficient algorithm for parsing their languages. The second topic of
this work is a study of the design and formal specification of a base
language on which an extensible language system can be built. It
employs a formal definition to present a base language, examines the
constraints on the design of such language, and discusses how these
constraints shape the language. The language includes one extension
facility, that for data types; the facility, its design, and its relation
to similar facilities in other languages are analyzed.

iii







TABLE OF CONTENTS

Foreword

Abstract

Chapter 1. INTRODUCTION

References

Chapter 2. EXTENSIBLE CONTEXT-FREE LANGUAGES
1. Introduction

2. The Formalism
2.1 Preliminary Remarks
2.2 Formal Definition

2.3 Examples

3. Formal Properties
3.1 Structural Results
3.2 Closure
3.3 Relation to the Family of Context-Sensitive Languages
3.4 Undecidability Results
3.5 Restricted Cases
3.6 Relation to Other Generalizations of Context-Free
Grammars
4. Parsing
4.1 Motivation
4.2 An Alternate Formalism for Derivations
4.3 An Adaptation of Earley's Algorithm
4.4 A Time Bound
4.5 Validity of the Algorithm
4.6 Adding Look-Ahead
4.7 Producing a Parse
4.8 Practical Applicability

ii

iii

19

23
27
31

36
41
45
92
96

65

69
69
71
76
82
88
92
92




TABLE OF CONTENTS (continued)

5. Nonformal Properties
5.1 Comments on the Undecidable Emptiness Problem
5.2 Relation to Canonic Systems
5.3 On Restricted Cases

5.4 Some Comments on the Formalism

6. Conclusion
6.1 Open Problems
6.2 Application to Extensible Languages

Appendix I, A Theorem on Context-Free Grammars
Appendix II. Definitions of Some Standard Types of Automata

References

Chapter 3. THE DESIGN AND FORMAL SPECIFICATION OF EL1
1. Introduction

2. Survey of Previous Work
2.1 Semantic Specification of Programming Languages
2.2 Extensible Programming Languages

3. Informal Description of EL1

3.1 Introduction to EL1
Character Sets and the Reference Language
Programs and Forms
Constants and Builtin Data Types
Identifiers and Simple Declarations
Binary Operations

Compound Forms

0 1 OO OB W N =

Iterations

.9 Mode-Valued Forms
3.10 Selection

3.11 Aggregates

W W W W wWw w w w

3.12 Procedures: Definition and Application

vi

95
97
101
102

105
106

109

114

121

127
148

163
165
166
167
168
170
172
175
177
192
193
196




TABLE OF CONTENTS (continued)

Page
3.13 Left-Hand Values 204
3.14 Additional Topics Dealing with Modes 206
3.15 Mode Recursion and Forward Reference 210
3.16 Builtin Data Types, Continued 222
3.17 Miscellaneous Topics 226
4, Semantic Foundations
4.1 Abstract Syntax and its Relation to Concrete Syntax 230
4.2 Linguistic Circularity 235
4.3 The Underlying System 238
5. The Formal Definition of EL1"
5.1 Formalism for the Definition of EL1 249
5.2 Written Representation of Programs — Preliminaries 255
5.3 Programs, Forms, and the Environment as1
5.4 Constants 260
5.5 Identifiers 262
5.6 Binary Operations 263
5.7 Compound Forms 266
5.8 Iterations 268
5.9 Modes 272
5.10 Selections 283
5.11 Aggregates 287
5.12 Procedures 289
5.13 Procedure Application 293
5.14 Auxiliary Routines Used by the Evaluators 300
5.15 Primitive Procedures 307
5.16 Builtin Procedures 314
5.17 Index to Section 5 318
6. System and Implementation Issues
6.1 Assignment Functions, Selection Functions, and
Storage Formats 321
6.2 Evaluator Recursion 324
6.3 STACK Operations 326




TABLE OF CONTENTS (concluded)

Page
7. Critical Discussion
7.1 Analysis and Justification of Language Features 328
7.2 Comparison with Other Languages 345
7.3 The Formal Definition 360
8. Extensions
8.1 Lists Property Lists, and List Processing 367
8.2 Sequencing Constructions 372
8.3 Separate Function Cell 374
8.4 Programmer-Defined Selection, Assignment,
and Conversion Functions 376
9. Conclusion and Work Remaining
9.1 Additions to the Base 391
9.2 Completing the Core 398
9.3 Interactive Environment 407
9.4 Compilation 412
9.5 Other Open Issues 417

References

viii




. a good notation has a subtlety and
suggestiveness which at times make it
seem almost like a live teacher . . .
a perfect notation would be a substitute

for thought.

Bertrand Russell
in the introduction to Wittgenstein's

Tractatus Logico-Philosophicus
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Chapter 1

INTRODUCTION

High-level problem-oriented programming languages were proposed
to reduce the time and cost of programming by enabling the programmer
to specify procedures in a concise language appropriate to some problem
area (e.g., cf. [Back57]). Initially, this was simple enough: there were
numerical scientific problems and there were business data processing
problems. In time, however, the set of application areas grew larger;
a list would now include discrete simulation, algebraic manipulation,
artificial intelligence, string and text processing, machine tool control,
civil engineering, information retrieval, and computer graphics. There
is no reason to believe that the growth in areas of computer applications
has come to an end. Further, specific problems frequently fail to fall
neatly into a single application area. It is sometimes necessary to per-
form algebraic manipulation followed by numerical calculation, discrete
simulations with results displayed graphically, or business data process-
ing coupled with text processing and report preparation. In the future,
such sprawl of problems over several application areas will increase and
may even become the rule.

Traditionally, computer science has attempted to provide one or
more languages for each application area. This is expensive. Expensive
in language design, implementation, and maintenance; expensive in
programmer training; expensive in system overhead. Further, this
leaves unsatisfied the project or programmer whose problem involves

more than one of the recognized areas.




More recently, the solution has been to provide a language which
serves several applications. For example, PL/I attempts "to encompass
among its users the scientific, commercial, real-time, and systems
programmers' [Rad65]. CPL was developed with similar objectives
[Barr63]. There are two difficulties with this approach.

(1) Such languages are large. To quote from a tutorial paper on PL/I by
D. Beech of IBM: ''Perhaps the most immediately striking attribute of
PL/I is its bulk" [Beech70]. The bulk is hardly surprising, for such
languages are essentially created by agglutination of facilities for the
several intended application areas. While not surprising it is, however,
expensive: in language design, implementation, and maintenance, in
programmer training, and in system overhead.

(2) Only a limited, fixed set of application areas is provided for. The
programmer who requires significant use of an area not explicitly included
in the package is no better off than before. For example, PL/I provides
character strings as a data type and has builtin certain simple operations
on strings. However, if it is necessary to carry out a pattern-matching
and replacement algorithm, e.g. as in Snobol [Garb66], PL/I provides
little help. There is no notation other than procedure calls in which to
express patterns, so that representation is very clumsy; storage manage-
ment is awkward; in general, the language serves as a poor host.

Extrapolating into the future, one might expect the next generation of
conglomerate languages to provide for combinations such as scientific
calculation, data processing, string manipulation, and discrete simulation.
Machine tool control and information retrieval might be added in the gener-
ation after that, with no end in sight. On the other hand, the continued
proliferation of new languages, one or more for each application area, is

no better.




The solution is to be found within the milieu of programming.
Traditionally, programmers have chosen notation and structure to sup-
press the constant and display the variable. Subroutine calls, iteration
loops, recursion, data description units, and indirect references to data
and control are all devices to collect invariants while simultaneously
exhibiting the points of variability. Programming languages, at least
good programming languages, are designed to give concrete realization to
these representation schema. In viewing the flood of application areas, it
is clear that the application area is a legitimate variable. Hence, we need
a programming language which is itself variable over a comparable range.
That is, we should like a language which can be extended, modified, and
thereby tailored for use in a wide variety of application areas.

What is constant in such a language is the ability to change. That is,
various language facilities are required to allow variation: to accept the
definition of extensions and act on them to produce a modified language.
These facilities constitute the core of a variable or extensible language
and it is precisely these constants which must be provided in the language.

In one sense, Algol 60 is a start at such a language. The numerous
proposals of the form: 'An Extension to Algol for 2" for
Z € {string manipulation [Smith60], formula manipulation [Perlis66],
discrete simulation [Dahl66], synchronous systems [Parn66], . .. }
testify to the mutability of Algol 60 and the durability of the Algol strain
under mutation. However, in each case, the authors of the extension
were required to go outside of the Algol language, indeed outside of their
Algol system, to define and implement the extension. The definition was
an English-language report or paper; the implementation required re-

writing the compiler. Further, each of these projects was undertaken




separately: there was little realization of the commonality of all projects
in extending Algol. Hence, there was little done to find unifying principles
or mechanisms which would aid in the n+ ISt extension.

To outline the envisioned scenario and establish some notation, it will
be useful to investigate how a unified extension schema could have been
produced. That is, suppose these extensions were to be realized in a uni-
fied manner from within the language; what would be required to carry this
out? We might accept Algol 60 as defined in the revised report [Naur63]
as a base language from which to start our construction. Since Algol 60
does not contain extension mecha.nismsJr these must be added by rewriting
the compiler and issuing a new report: "An Extension to Algol for
Creating Further Extensions.'" This language — call it Algol* — differs
from the other augments mentioned above in that it is expected to contain
them all, in posse. Hence, it is said to be a language core. That is, a

core language consists of a base language plus extension facilities. Using

the extension facilities, one can define a variety of extension sets, each

set creating a new extended language. Pictorially,

%
extension se‘c1 Algoly
o Algol,
Algol Algol% extension set,
+ extension facilities ‘
extension seti
%
Algoli

%
The key point is that the extension sets are legal forms in Algol .

TThe sole exception is the fluent but weak device of procedure call,




There is little new in this proposal. As early as 1960, J. Smith
observed [Smith60] that languages properly belong to language-systems
containing a "'nested 'continua' of languages. In such systems, new
languages may be embedded, appended, extracted at will.,"! The idea was
periodically rediscovered. For example, at the Symposium of the Inter-
national Computation Center, Rome 1962, van der Poel [vanD62] proposed
that ''what is needed is an extremely powerful and generalized language,
but stripped down to the utmost, stripped down to the possibilities that it
can, in itself, by a sort of procedure declaration, declare the rest of the
mechanism needed." Later in the conference, C. Strachey [Strac62] spe-
cifically observed that "it is absolutely essential that this general language
should have the facilities of using new syntactic forms."

For a number of years, the idea remained an orphan: born but not
adopted. Around 1966 a number of papers appeared, proposing either core
languages or particular extension mechanisms which could be grafted onto
existing base languages. For the most part, these were paper designs —
unimplemented or only partly implemented. However, a brief review of
this early work will serve to illustrate the sort of extension facilities
envisioned for an extensible lza.ngua.ge.T

Leavenworth [Leav66] discusses application of the macro concept,
familiar in assembly languages, to high-level languages. Taking as illustra-
tive base language a subset of Algol 60, he proposes that macros be used to
extend the possible forms for two syntactic types: (statement) and

(primary). For example, a macro which defines a simple type of

TIn section 2.2 of chapter 3, we discuss in detail more recent proposals
for extensible languages.




(for statement) may be specified by the macro patte:c'nT

( statement) ::= for (variable) <«

(expression) to {(expression) do ( statement)

where (variable), (expression), and ( statement) are syntactic types
defined by the base (or extended) syntax. Whenever this pattern is found
in the source text during parsing, the matched substring is deleted and

replaced by an expansion of the macro definition which is

begin $1 « $2;
L1: if $1 < $3 then begin $4; $1 « $1+1; goto L1 end;

end
The expansion is performed by replacing each instance of $i by the sub-
string which matches the ith syntactic unit in the pattern. The expanded
string is then reparsed, so that multiple levels of definition can be cleanly,
if not efficiently, handled.

Cheatham [Chea66] proposes a system which generalizes this in three
areas.
(1) Macros may be called either during syntactic analysis, as proposed
by Leavenworth, or subsequent to analysis. In the latter case, expansion
corresponding to multiple levels of definition can be carried out once, at
definition time, rather than on each invocation of the macro.
(2) Also, post-analysis macros may have their meaning expressed in the
intermediate language of the translator, giving additional flexibility and

control over the semantic definition.

TWe have taken some liberties in changing the notation used by
Leavenworth to be closer to that of Algol 60.




(3) Finally, macros may be defined to be of any syntactic type in the

language, not just { primary) and ( statement) as proposed by Leavenworth.

Garwick [Gar67] discusses the definition of new data types and oper-
ators which act on objects of these new types. The core language has only

three types: real, integer, and byte. However, the data type complex may

be defined by the declaration

block complex {real re , im}

Here, ''block'' signals a certain class of data type declaration, ''complex"
is the name of the new data type which is defined to consist of two reals,

the first being named ''re", the second being named "im''. Subsequent to

definition of complex, variables may be declared to have that data type

complex w, z

The components of w and z are reals and may be referenced by sub-

scripts which use the component names. For example,T

w([re] := z[im]

' component of w equal to the value of the "im'' component of z.

sets the ''re'
Since it is awkward to explicitly denote all operations on complex numbers
in terms of their underlying structure, the various arithmetic operators
may be extended to operate on complex quantities as well as reals and

integers. For example, the assignment operator is extended by the follow-

ing definition.

TAgain, we have changed notation, bringing it closer to Algol 60. We there-
by avoid explaining several idiosyncrasies of Garwick's notation which are
irrelevant to the present discussion.
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operator a := b defined
if (real a V integer a) A complex b
then a := b([re]

else if complex a A (real b V integer b)

then begin a[re] := b; a[im] := 0 end

else if complex a A complex b

then begin a[re] := b[re]; a[im] := b[im] end

n "

Here, ":=" is the operator being defined; "

:='"' takes two actual operands
which are denoted in the definition by the formal operands "a' and "b".

The definition tests the types of the operands using real, integer, and

complex as predicates and selects the appropriate defining body. (Note

that the defining bodies use ':="

as defined prior to the extension.) In
similar fashion, Garwick exhibits definitions of the data types string
(character string), vector3 (3-space vectors), and poly (polynomials with
real coefficients) and constructs appropriate operations over these types.

Galler and Perlis [Gall67] take a further step. One observes that
operations on new data types are defined in terms of operations on their
components. Hence, to perform operations on instances of some defined
type, e.g. matrix, it is frequently necessary to sequence over their com-
ponents. For example, if A, B, and C are n by n matrices,

A := BXC

should have the result

begin integer i, j, k;

for i := 1stepl until n do
for j := 1 stepluntil n do

Ali, j] := innerproduct (B[i, k], C[k, j], k, n)

end




where innerproduct is defined in the usual fashion using yet another

iteraxtion.T Using the method of Garwick, the matrix statement

"A := B X C" would be interpreted as follows.

(1) The operator "X'" is called. Since the operands are matrices, the
matrix code is selected (at compile-time). Execution of this code pro-
duces a result matrix R defined R = B X C.

(2) The operator '':=" is called, the result being that R is assigned to A.

The point is that each operation is performed orthogonally to all others.

While this simplifies the processing, the generation of temporaries such

as R is logically unnecessary and wastes storage.

The paper by Galler and Perlis is concerned principally with a method
for automatically generating expansions such as that given above. The
method consists of two steps.

(1) Replacement of operator /operand units by their definition using a
scheme much like the syntactic macros of Leavenworth and Cheatham, the
difference being that a parse tree rather than string text is used as the

program representation.

TFor example, using the Jensen device [Ruti67] in a type procedure, a
possible definition is

real procedure innerproduct(x, y, k, n) ;

value n;

real x, y; integer Kk, n;

begin real sum;
sum := 0;
for k := 1stepl until n do sum := sum +xXy;
innerproduct := sum;

end innerproduct




(2) Rearrangement of the resulting parse tree in an attempt to optimize
the amount of temporary storage to be allotted. This is carried out by a
top-down search of the parse tree, applying a set of transformation rulesT

repeatedly, according to certain cyclical orderings.

While most proposals for extension facilities have been devoted to
one or more of the three areas discussed above — syntax, data types,
and operators — various other areas have been put forth as candidates
for variability (e.g., cf. [Perlis66] and [Stand69]). Most important of
these is control, i.e., allowing definition of control structures such as
co-routines, pseudo-parallel processes, clock-driven simulation, back-
tracking, and monitoring with interrupt capabilities. Related to this is
the notion of specifying evaluation rules of special forms, possibly in
terms of special control structures.I

In addition to those papers cited, a host of others has appeared in
recent years.§ Despite an abundance of research, a satisfactory extensible
language has yet to be designed. That is, while there are languages, even
working languages, which exhibit one or more extension mechanisms, no
language handles extension with the same completeness and success as,

for example, Algol 60 handles the expression of numerical algorithms.

TThe analogy between this and the transformation rules on deep structure
hypothesized by linguists [Chom65] invites investigation. While such
investigation lies outside the scope of this work, we feel it may be quite
significant and intend to pursue it elsewhere.

IFor example, one might introduce the notion of a parallel case
expression in which the selection produces a set of integers (instead of
the normal integer) in which case, all the corresponding statements are
evaluated in parallel, producing as result a list of the individual results.

§In chapter 3, section 2.2, we give a reasonably complete list of extensible
language projects.
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In many respects, the field is in the same state as was the field of
languages for numerical algorithms around 1954, 1955. There are languages
which can claim the appelation ""extensible', but the claim is weak and it
is clear that these languages are but first steps. To quote again from
Strachey [Strac62], ""This proposal [an extensible language] is not one that
can be laid down in advance, which can be worked out by an international
committee, is is really a difficult problem."

It is our contention that even now, a really satisfactory extensible
language is several years away. Much research remains to be done in
each of the three principal components which constitute an extensible
language:

(1) the base language, its theoretical foundations, its design, and

its specification,

(2) the extension facilities, their mechanism, and their theory,

(3) the definition sets, their creation and interaction.
While some of this work can be carried out in conjunction with a language
development and implementation project, other topics may be pursued in
purely theoretical investigations.

This thesis is a study of two specific issues in extensible languages:
(1) formal syntactic specification, and (2) design and formal specification
of a base language. The thesis does not attempt design of a complete
extensible language and system, nor does it attempt to integrate the two
issues into a partial extensible language. The issues are largely orthogo-
nal and we have chosen to treat them independently. Consequently, the
two studies are autonomous; each is presented in a separate, self-

contained paper.
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In the formal syntactic specification of an extensible programming
language, the salient characteristic is that the language must be allowed
to grow. Assuming that the language is specified by a context-free
grammar, this is equivalent to requiring that the grammar be permitted
to grow. Additions to the grammar are derived from extensions state-
ments made in the language. For example, the macro pattern of

Leavenworth,
(statement) ::= for (variable) « (expression) to (expression) do (statement)

which is a declaration permitted in a (blockhead), may be interpreted as a
new production to be added to the grammar. To generalize, one might
consider a class of grammars in which the production rules used in the
derivation of a string are determined in part by the string itself. Note that
this requires that the initial grammar must allow the generation of strings
which contain substrings interpretable as productions.

In chapter 2, we study the theory and application of such grammars,

which we term extensible context-free. We first examine formal proper-

ties such as structural results, closure, undecidability results, restricted
cases, and relation to other models in formal language theory. Subse-
quently, we discuss the parsing of languages specified by extensible
context-free grammars, we state and prove the validity of a recognition
algorithm, and we outline how this may be converted to a parse algorithm.
We conclude the chapter with a discussion of the extensible context-free
formalism, some open problems in its theory, and its application to the
broader issue of constructing extensible programming languages.

Study of the design and formal specification of a base language
perhaps requires some justification. It might, for example, be argued

that any language can be made extensible by grafting on extension facilities;

12




hence, one might (erroneously) conclude that the question of a base
language is vacuous. It is true, of course, that many languages can be
improved by such grafting. Further, in some circumstances desire for
compatibility may dictate that a language in extensive use be so upgraded
rather than replaced. However, where such considerations are not over-
riding, it seems decidedly advantageous to employ a base language
designed with extensibility in mind. Conventional programming languages
lack, often explicitly deny, the generality required of an extensible base.
At the same time, such languages are frequently far more complex than a
base language should be. One could, in principle, start with a conventional
language, generalize by removing restrictions, simplify by removing
special case mechanisms, and arrive at an acceptable base. It seemed
easier, however, to start afresh. It was our belief that by so doing, we
could improve considerably upon existing languages and produce a language
more simple and parsimonious, yet more general and powerful. We have
designed such a base language, named "EL1". Chapter 3 discusses its
design and formal specification.

Concern with a formal specification perhaps also requires justification.
In describing a programming language, the main goal is to explain how to
write programs in it and what such programs mean. The former is
syntactic specification, the latter, semantic specification. With relatively
unimportant exceptions, syntax is satisfactorily specified in the frame-
work of context-free grammars. These are suitable not only for human
consumption but also as the basis for mechanical parsing. Further, as
discussed in chapter 2, they can be cleanly augmented to handle languages
which grow by the addition of new syntax rules. By and large, we have a

good handle on syntactic specification. However, turning to semantic

13




specification, we find no parallel success. Most programming languages
have their semantics specified by natural language descriptions (usually in
English). These are generally imprecise, ambiguous, lacking in detail,
and otherwise unsatisfactory. Even after careful reading of such a defining
report, uncertainty as to the meaning of one or more constructions is
generally the rule rather than the exception. On the other hand, repeated
attemptsT to define programming languages in terms of semantic formal-
isms such as the A-calculus or Markov algorithms have fared no better.
Hence, the formal semantic specification of programming languages is a
nontrivial matter of considerable importance.

We wish to emphasize that this thesis embraces only two topics of a
potentially far larger study of extensible languages. Several important
issues still require solution, many others invite investigation, and doubt-
lessly still others will be uncovered as simpler problems are solved. Two
that seem important at this point are (1) relating a simple facility for oper-
ator definition to the syntax mechanism, and (2) global resolution of
meaning. We will outline these in turn.

While an extensible context-free grammar provides complete control
over the syntax, it may prove more powerful than appropriate and hence
somewhat awkward to use for simple cases. For example, a new arithme-
tic infix operator "op', with binding strength between "+'"' and "*'", could

be added to Algol 60 by redefining the necessary pr'oductions;:t however, it

TThese various attempts are reviewed in section 2.1 of chapter 3.

ISpecifically, in section 3.3.1 of [Naur63], we delete

(term) ::= (factor) | (term) {multiplying operator) {factor)
and add

(term) ::= (term2) |{term) op (term2)

(term2) ::= {(factor) |{term2) (multiplying operator) {factor)

14




would be preferable to simply define

operator op priority + < op < X means . . .

and have the appropriate changes to the syntax generated automatically.
Allowing this facility and generalizing it to the various syntactic forms
which may be regarded as ''distributed" operators (e.g., Algol's
if-then-else) requires some study. In general, the construction of face-
plates which make complicated mechanisms easily available for simple
uses is a matter which deserves attention.

Global resolution of meaning refers to a possible generalization of
the Galler-Perlis paper discussed earlier. Given an expression composed
of objects of some defined data type and operators acting on these objects,
e.g.,

Ay op; (A, op, A,)

it is frequently the case that direct application of operators to operands is
wasteful of some computer resource. We should like to allow the action of
opy to be nonorthogonal to op;,. In general, we should like to allow the
meaning of a form and its evaluation to depend upon the context in which it
appears. Galler and Perlis treat the case where the interaction is a parse-
tree rearrangement intended to optimize the amount of temporary storage
required. As noted in a codicil to their paper, certain circumstances
require the optimization of other resources (e.g., time), which may be
carried out by different sets of transformation rules. They point out:
"The important lesson here is that one should have available not only a
variety of definitions, but a variety of substitution and tree-arrangement

1

strategies." Investigation of such strategies and their generalization in a

system which allows the programmer to specify transformation rules

15




requires considerable study. While this area is presently ill-defined and
ill-developed, we believe it will eventually prove a source of significant

power in extensible programming languages.
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Chapter 2

EXTENSIBLE CONTEXT-FREE LANGUAGES

Section 1. INTRODUCTION

In this chapter we present a class of grammars designed for
the syntactic description of extensible programming languages. These
grammars employ a departure from conventional syntactic formalisms
in that their syntax is not fixed, but rather is made variable.

This notion is best introduced by a review of the simpler case.
In a conventional grammar, there is a fixed body of syntax rules and
a set of instructions for using these rules to generate the legal strings
of the language. Various types of syntax rules and various sets of
instructions for using these rules form classes of grammars. The
most familiar instance of this descriptive method is Algol [Naur63],
whose grammar is of the class '"context-free'. Its syntax rules are all
rewriting rules (a— ) with a single symbol on the left-hand side of the
replacement arrow. The single, implicit instruction is a replacement
rule: if oA B is an intermediate string and A - v is a rule, then avB is
an intermediate string. Many other classes of grammars have been
proposed for the description of programming and natural languages.
All share a common trait: for each grammar, the set of syntax rules
is a fixed, finite set. This is satisfactory so long as the language has
a fixed, predetermined syntax.

We assume the reader is familiar with the notion of an extensible

programming language, e.g., [Bell68], [Chea66], [Chea68], [Gall67],
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[Gar68]. By this term, we mean a higher level language which includes
mechanisms with which the user can extend the language to facilitate its
use in various application areas. One useful facility of such a language
is a means whereby new syntactic forms can be added to the language for
local use. To take a concrete — and somewhat restricted — example,
suppose such a facility were added to Algol, resulting in a new language
called Algol-E. In Algol, one may declare new variables and new pro-
cedures in the blockhead of each block. In Algol-E, one may addition-

ally declare new syntax rules whose scope is that block and all blocks it

contains. It might be useful to allow deletion of existing productions as
well as addition of new ones, so that for each block the set of production
rules, Pi’ is given by:

P; = PioU Pia = Piq:
where Pio is the production set of the immediately containing block,
Pia is the set of productions declared in the blockhead as added, and
Pid is the set of productions declared as deleted.

For example, a block with a restricted for statement might contain

a declaration:

production [[(for list element) — (arithmetic expression) to

(arithmetic expression) ],

[{for list element) / (arithmetic expression) step
(arithmetic expression) until (arithmetic expression) ].

Each production is enclosed in the brackets "["" and " ]]"; a right arrow

indicates a rule is being added; a slashed arrow indicates a rule being

deleted from the production set. Within the block, forms like
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"for i:=1to n do..." are legal, while the more general form

" is not.

"for i:=1 step s until n do. ..

For new forms to be useful, it is necessary to specify semantics as
well as syntax. Associated with each production being added would be a
definition of its meaning expressed in terms of the semantics of the en-
closing block. This raises a set of issues concerning semantic vari-
ability. We will not deal with these issues in this chapter. Our interest
here is in syntactic variability: how this can be formalized, what
properties are thereby obtained, and how strings with variable syntax
can be parsed.

While our primary interest is in the variability of syntactic forms
per se, one special case is of particular interest. It will be recalled
that the form of a legal Algol program is only partially specified by its
context-free grammar; other restrictions are described by the English
text. It has been shown that some of these restrictions cannot, even in
principle, be expressed by a context-free grammar. In particular, the
requirement that all variables be declared is such a restriction. It has
been suggested, [DiFor63], that a declaration (e.g., real temperature ;)
may be regarded as specifying a new syntax rule (e.g., production
II(variable identifier, - temperature];). If this convention is adopted
and the rule "( variable identifier) - (identifier)" is deleted from the
syntax of Algol, then it is guaranteed that only declared variable names
may be used in block bodies. It should be noted that such conventions
cannot be used to specify all of the non-context-free restrictions. We
have not, for example, made the necessary provision that a variable

may not be declared in two conflicting ways. However, it is of interest
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to note that a partial solution to a standing problem in language specifi-
cation drops out as a special case of syntactic variability.

There is a substantial body of research by others (e.g., [Aho68],
[Aho69a], [Aho69b], [Fisch68], [Gins67], [Gins68b], [Greib68], [Ros69],
[Whit68a], [Whit68b], [Whit68c], [Whit69]) into classes of grammars
which generalize the context-free. Much of this work has been motivated
by a desire to model non-context-free restrictions on conventional pro-
gramming languages. However, there has been little research into the
formal properties of extensible languages. Bell [Bell68] describes an
extensible language defined by a grammar belonging to a class he terms

priority BNF. However, since priority BNF grammars generate the

. * . . . .
recursively enumerable sets, most questions of interest, including

membership, are undecidable.

&

Although this is not discussed in Bell's work, it is entirely straight-
forward to show that any Turing machine can be imitated by a priority
BNF grammar.
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Section 2. THE FORMALISM

2.1 PRELIMINARY REMARKS

We now turn to a specific formalism which embodies the notion
of variable syntax. We will define a class of grammars, the extensible
context-free (ECF), which contains grammars such as those discussed
in the previous section. Before doing so, however, we wish to gener-
alize these examples somewhat.

The definition of local syntax in terms of a local production set
for each block is clearly dependent upon Algol's block structure. In
other languages, the block structure might be substantially modified,
or entirely absent. To obtain a formalism which does not depend on
language idiosyncrasy, we adopt the convention that string "'structure"
will be ignored, and new productions may be used anywhere in the string
to the right of the point at which they are declared. This is made well-
defined if rewriting rules are applied only to the leftmost nonterminal.
(This is, of course, no restriction on the weak generative power of
context-free grammars.) Hence, at any stage of a derivation the string
will have the form xA«e, where x is a terminal string, A is a non-
terminal, and « is an arbitrary string of terminals and nonterminals.
The local production set is determined by the productions initially in
the syntax and by those which appear in the string x. The local pro-
duction set, in turn, specifies in what ways A may be rewritten.

The second generalization we shall make is that the new pro-

ductions need not appear explicitly in the terminal string, so long as
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they canbe derivedfrom it. Part of each ECF grammar will be a finite

state machine with output, or finite state transducer. The finite state

transducer (FST) takes the terminal string as input and outputs the
associated set of productions. This mapping serves several functions,
the most important of which is to allow the specification of productions
involving nonterminal symbols by means of a string of terminals. For,
by definition, a nonterminal cannot appear in a terminal string; yet
ecach production must contain at least one nonterminal. The mapping
also permits the formalism to cover extensible languages in which syn-
tactic extensions are not stated explicitly as productions, but rather by
means of macro forms or operator definitions. The latter forms may
be distinctly preferable to some classes of users.

To coordinate the two activities — generation via the syntax rules
and change of syntax rules due to the output of the FST — we amend the
above description as follows. At any stage of derivation, let the string
be xAa. The local production set is given by: (1) the initial productions,
and (2) the output of the FST given x as input.

An example may help make this clear. Consider a grammar with
terminal vocabulary {a,b, c}, nonterminal vocabulary {X, F, S}, and
initial production set:

X - FcS

F - aF|bFlalb
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The finite state transducer is specified by its state transition diagram:

/8 a/e

a/[S— a Q c/ 1

Yo b/[S~b
b/b b/e

where 9, is the start state and all transitions not explicitly specified
lead to a ''dead" state. A sample derivation by this grammar is:
X = FcS = aFcS = abFcs =5 abaaabc$
At this point, the FST acting on the initial terminal string has output a
complete production: [S - abaaab]]. Hence, the local production set is:
X = FeS
F - aF|bFlalb
S — abaaab
The derivation concludes with a final step
abaaabcS = abaaabcabaaab
Clearly, the language generated by the grammar is {wew|we {a,b}+},

which is known not to be context-free.

13

"A state transition diagram is interpreted as follows. The nodes repre-
sent states; the arcs between them represent transitions. Consider, for
example,

b/p
O O

q; 13

This is read: when in state q, if the input is "b'" then output "B" and go
into state dg-
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One final generalization is required. In the above example, the
nonterminal vocabulary was fixed, and the single new production
employed one of these nonterminals on its left-hand side. A character-
istic property of grammars is that they use a finite vocabulary, and in
particular a finite number of nonterminals. For any language having
a fixed syntax, this is quite acceptable: The set of productions being
finite, the number of nonterminals is a fortiori also finite. However,
if the production set is allowed to grow, any given finite set of non-
terminals may be found to be too small. We wish to consider languages
whose local syntax may be of arbitrary complexity; this, in general,
requires an unbounded set of nonterminals. (We show, in Appendix I,
that given a terminal vocabulary of more than two symbols and any
integer Kk, there exists a context-free language such that any context-
free grammar which generates the language uses at least k nontermi-
nal symbols.)

To provide for an unbounded set of nonterminals and still work
within a finite vocabulary, it is necessary to use some sort of encoding.
This is, of course, precisely what is done in the Algol report. We may

regard a syntax rule '(letter) ::=a"

either as a context-free production
with right-hand side "'a'" and left-hand side the single nonterminal
"(letter)", or with equal validity as a Type-O production whose left-
hand side consists of the eight symbols: " (", n]n, men ngn ngn nen nwpn nin
We shall take the latter viewpoint.

For any given ECF grammar, let the terminal vocabulary be Z,
let the total vocabulary be V, and let the F'ST have output vocabulary A,

with £ C A. We assume that A includes a set of six distinguished symbols

r={[, 1, —, /&, (, )} and that I is disjoint from Z. Let VN=v-z-r,
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let Vo, = {{w)| we Z+}, and let I = V /(U V,,. New productions are

taken to be those substrings of the FST output having the form

[Apa]] where A€l

peq{—, 7‘—}, and
ae QUD"

We thereby place strict requirements on the form of substrings which
may be rewritten. This guarantees that generation behavior is essenti-
ally context-free in the sense that information may not be passed along
in the string. In accord with common parlance, we refer to I as the

set of intermediate symbols, with the understanding that a member of

I may actually be a character string.

2.2 FORMAL DEFINITION
In the preceding discussion, we made use of a number of notions
in an informal fashion, depending on the reader's intuition for their
meaning. We now proceed to give precise definitions of these notions.

Our goal will be a formal definition of ECF languages.

Definition 2.2.1. A finite state transducer with accepting states (FST)

is a 7-tuple T = (K, Z, A, 8, \, . F), where K is a finite set of states,

F C K, where Z and A are finite input and output vocabularies,

respectively, and where q, € K is the initial state. 6 is the transition

function 6: KXZI - K, and \ is the output function A: KX I - A*. The

functions 6 and N\ are extended so that 6: KX Z*—» K and A: KX Z*-— A::<
*

by the following definitions:

6(q,e) =N (q,e) =e
6(q, xa) = 6(é6(q, x), a) .
Mg, xa) = Mq, x) M6(q, x),a) V x € T, aez, qek.

3
We use the symbol ""e'" to denote the empty string.
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If we 3 , then T(w) is defined to be Mag, w); if L © ¥, then T(L) is
defined to be {T(w) |w e L}. If we Z;':, we say T accepts w if

6(q0, w) € F.

Definition 2.2.2. An extensible context-free (ECF) grammar is an

11-tuple G = (V,Z,PO, X, T,(,), 0,1, — #), where V is a finite set
of symbols, X  V is the terminal vocabulary, X € V -ZX is the initial

symbol, and 1"={(,),|I,]],——,7‘~}CV-Z. We define V.= V-Z-T,

N
B + B N .

VM ={{w)l wez}, I=vyUVy, and V=TUZ. P _isasetof

initial productions, each of the form A - o, where A €I and o € Xk.

Finally, T is a finite state transducer T =(K, Z, =, 6, \, . F)

where =V C V.

Remark. For brevity of notation, the special symbols '"(", ")", "[",
"1", "—=", and "4'" will henceforth be assumed to be present, and an
ECF grammar will be specified as a 5-tuple G = (V, Z, Po’ X, T).

Note that while V is the vocabulary, V is the effective vocabulary,

for symbol strings of the form (w) (where w € Z+) act as single elements.

Let G be an ECF grammar. The language, L(G), generated by
G is defined by specifying (1) the form of an instantaneous description,
and (2) the transitions which take an instantaneous description into its

possible successors.

Definition 2.2.3. An instantaneous description (ID) of an ECF grammar

G=(V,z, Po’ X, T) is an element of Z* X _Y*.

Let 7 = (w, 7) be an instantaneous description. T(w) is the output
of the finite state transfucer T for the ID #. This output, taken
together with the initial production set Po’ determines the set, Pﬂ, of
legal productions applicable to 7. We refer to Pn (or to P, when 7 is

understood) as the local production set. Denoting the projection function
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which maps 7 into its first component by U, we write:

P, = P(P_, T(U(m)),

where IP is specified by the following procedure.
The string T(U(7)) contains a unique set of disjoint substrings,
each of the form:
[Apa] where A€l
pe{—, #} and

*
aeV .

It is possible that T(U(7)) contains no such substrings. However, if it
contains any, they are guaranteed to be uniquely defined and disjoint
since [, ] §# VU {—, /~}. There will be finitely many such sub-
strings, say N; let them be indexed and let d>i = Aipiafi for i=1,...,N.

Then Pl’ P PN are defined as follows:

L
for i=1,...N

if p; = """ then P, =P, _, U {d)i}, else P, =P,_, - {qSi}.

Finally, define Pvr = PN.
The transition between an ID 7 and a successor 7' is denoted by
7= 7' and is obtained as follows:

(1) If (A=o) € P7r’ then

7= (w,AB) = (w,ap) = 7.

(2) If ae X, then

7 =(w,aB) = (wa,p) = 7.

m
The extension of = is denoted == and is defined by:
7225 7' (m = 0) if 3 ID's T _,7,,... T__ such that
o’"1 m

=7 7 =",
T 02> M= = T
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Finally, the transitive extension is denoted by =5 and is defined:

725 7 if 3 m (0 € m < ) such that L

)

Definition 2.2.4 Let w = a; ...a € Z*. A derivation, I, of w is a
sequence of ID's Il =7 _,7,... #__ such that
o) m
(1) 7 =(e,X),

(2) 7>,

N

(3) =_ =(w,vy) for some ye X%.

m

A derivation II = 7_ ... w__ is said to be terminal if 7 = (w, e).
o m —_— m

A derivation II = Ty T is said to use a production A - ¢ if

3 i(0 € i € m-1) such that ™, = (w, Ay) and Ty

1= (w, av) for some 7.
Remark. When speaking informally, it will frequently be useful to
write an ID 7=(w, 8) in the simpler form "wpg". Analogously, a deri-

vation (e, X) &5 (w, y) will sometimes be written "X &5 wy'". Context

will make clear which use of the transition symbol is intended.

Definition 2.2.5. Let G =(V, Z, PO, X, T) be an ECF grammar. The

language generated by G is defined to be:

1(G) = {wl(e,X) =5 (w,e) and spla,, w) e FT}’

where 6T and FT are the transition function and accepting states of T.
The above definition of instantaneous description and ID transition

has the virtue of simplicity, but viewed as a computational procedure

it is incredibly inefficient. It blithely ignores an essential property of

ECF derivations: i.e., if II = To o T is a derivation, then U(7ri) is

monotone nondecreasing as a function of i. This monotonicity makes it

possible to compute P7r by incremental techniques, adjusting the local
i
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production set as new productions are added to the right end of T(U(7ri)).
In Section 4.2, we will discuss an alternate development of instantaneous

descriptions which makes use of this property.

2.3 EXAMPLES

A few examples may help to illustrate the generative power of the
above formalism. The first of these will be frequently used in later
discussion.

In these examples and elsewhere in this paper, it will be con-
venient to specify an FST by means of a state transition diagram instead
of by an explicit definition of its transition and output functions. These
diagrams will be simplified if we adopt the convention that all unspeci-
fied transitions lead to a dead state. The dead state emits no output
(i.e., gives the empty string as output) and is a nonaccepting state (i.e.,

does not belong to FT). Also, unless specifically stated otherwise,
all states explicitly shown in a state transition diagram are accept-

ing states.

Example 2.3.1 (non-primes > 4 preceded by a factor).

(n+1)m| n>1, m> 2} is generated by

The language {anba
G=(V,%,P_,X,T), where V= {X,N,A,R,a,b,[,1,~ /(. )},

z = {a,b}, and P0 is given by:

X — AbRN
A-aA|a

N — RN|R.
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The finite state transducer is specified by:

a/[R -~ a O b/all

O C

This grammar, which is similar to Fischer's Example 1.2.2 [Fisch68],
generates a string of one or more a's, followed by two or more repe-

titions of the initial string of a's.

Example 2.3.2 (a very simple algebraic language in which variables

must be declared).

The initial productions are:
(block) - (blockhead) ; {(compound tail)
(blockhead) - begin (declaration) | (blockhead) ; (declaration)
(declaration) - declare {(name)
(name) - (letter) | (letter) (name)
(letter) - alblcl... Iyl z
(compound tail) -~ (statement) end | (statement) ; {(compound tail)
(statement) - (identifier) := (expression)
(expression) — (identifier) | (identifier) + (expression) .

It will be noted that there are no rewriting rules with "(identifier)" as

left-hand side. This, however, is remedied by the FST:
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declare/ [ (identifier) —

x/e 2/2
V x # declare i /1 Ve#;

This grammar is a particularly simple form of the Algol-like grammar
discussed in the Introduction. The form {(declarations) consists of the

symbol "declare", followed by a string over the alphabet {a,b,c,...z},
delimited by a semicolon. For each such declaration, a new production

is adjoined to P.

Example 2.3.3 (the encodement of a context-free grammar followed by

a string generated by that grammar).

This example is a schema for a set of ECF grammars, one for
each possible terminal vocabulary. Let I be a (finite) terminal vocabu-
lary. We construct an ECF grammar which generates strings consist-
ing of the encodement of an arbitrary context-free grammar with
terminal vocabulary I, followed by a string belonging to that context-
free language.

Let G = (V, 2, X, Po’ T) where £ =3 U {41 i $}, and where
V=zU{X,E,R,N,M,L,S,A,<>~/,[.1} P _is given by:

X -E<o> for some o€ 2
E - RE|R
R—-NS$

N—-4M*»
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M—-LM|L

L — ¢ V2elZ
S——ASle
A-N|L

The finite state transducer is specified by the following diagram:

L/4 V2eX

$/10< /> —

qO
@ $/1 @)

2/4 ¥ 2€eX x/x ¥ xeZ-{$}

The grammar operates as follows. It first generates a sequence

of substrings, each of the form

{whroal where w€f+,

and e (EULE T )",

each interpreted as a production

<w> — ¢.
This results in a local production set P = P0 \U P’. Then a string is
generated by a context-free derivation from the production set P’.

For any context-free grammar Gc having terminal vocabulary £, and
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any w € L(Gc)’ there is some string in this language consisting of an

encodement of GC followed by w.

Remark. By suitable modification of this ECF grammar, it is possible
to restrict the set of productions P’ to any of the following classes:
regular productions, linear productions, intermediate constituent form,

or Greibach normal form.
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Section 3. FORMAL PROPERTIES

In this section, the formal properties of ECF languages will be
explored. We study some of the usual characteristics of formal
languages: closure under various operations, the membership problem,
the emptiness problem, and a few related questions. We then examine
a number of possible restrictions on the form of new productions and
show that these lead to restricted classes of languages, thereby giving
negative answers to certain questions concerning canonical form.
Finally, we relate ECF grammars to other generalizations of the

context-free.

3.1 STRUCTURAL PROPERTIES

We begin with a characterization of those productions output by
the FST which make the associated language ECF but not CF (i.e.,

inherently ECF).

Definition 3.1.1. Let G = (V,£,X,P_,T) be an ECF grammar. If we V

the length of w, |w|, is defined as follows:
(1) lel =0
(2) lal=1 VaerVN
(3) if A€ VM’A=<al“'an> where a, € Z, then |lA|l =n+ 2
(4) if W= W w, where Wi, Wy € v, thenlw|=|w1|+lw2|.

Definition 3.1.2. Let ¢ = A — a be a production. The length of ¢, ¢ 1,

is defined tobe |¢| = |Al+|a].
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We next define the term ''rule length bounded'" as applied to a
variety of objects, culminating in the definition of a rule length bounded

grammar.

Definition 3.1.3.

(1) Let w € L(G), and let II be a terminal derivation of w. 1I is

rule length bounded with constant k (RLB-k) if, for each production ¢

used in I, ¢ | < k.

(2) Let w € L(G). The string w is RLB-k if 3 a terminal derivation,

I, of w which is RLB-k.

(3) Let G be an ECF grammar. G is RLB-k if V we L(G), w is

RLB-k. G is rule length bounded if it is RLB-k for some integer k.

Our first theorem asserts that if a grammar is rule length
bounded, then its language is only context-free. Loosely speaking, this
shows that a context-free grammar given the additional power to add

new productions which are RLB is still only context-free.

Theorem 3.1.1. If G is a rule length bounded ECF grammar, then

L(G) is a context-free language.

Proof (by pda argument).

Let G = (V, 2, X, PO, T) be RLB-k. Let the number of elements in
V, #(V), be N. Then the number of possible distinct productions is
bounded by Nk. Hence, the number of possible distinct production sets

k
is bounded by oN . Since this is finite, we can construct a
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nondeterministic pushdown automaton;:< which accepts precisely the
language L(G).

We sketch the construction. The action of the pushdown automata
(pda) is nondeterministic, top-down, predictive. Corresponding to a
production A -~ @, we have the pda step (q,w,yA) F(q,w, yaR) for an
appropriate state q. We need only show that it is possible to determine
the appropriate states; i.e., that the finite state control can keep track
of which productions are valid at any point in the derivation.

The finite state control is essentially a cross-product con-
struction of NX components, in which the "active' productions are
recorded one production per component. The start state corresponds
to the production set Po' As each symbol of input is read, the FST
mapping is imitated. The FST output, which represents a sequence of
productions, is reflected in the machine state. For each production
added or deleted, a record is made in the corresponding cross-product
component.

So constructed, the pda performs at random some legal gener-
ation (legal in the ECF sense) of the grammar G. The pda accepts if

and only if the string so generated is identical to the input string. O

Remark. The converse does not hold. There exist ECF languages

which are context-free but which are defined by ECF grammars that

*

In the course of this paper, we will use a number of standard types of
automata. Since these automata frequently appear in the literature, we
assume familiarity with them on the part of the reader. However, since
there is no universally accepted notation for these machines, this is a
source of possible confusion. Hence, in Appendix II, we give the defi-
nitions and notations used in this paper for these automata.
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are not rule length bounded. For example, consider {a"ca"ln = 1},
defined by a grammar which uses the first string of a's to form a pro-
duction used to generate the second string of a's.

Suppose some ECF grammar is not rule length bounded. It will,

however, contain some subset which is. This subset is context-free.

Definition 3.1.4. Let G be an ECF grammar and let k be an integer.

We define L(G)/k as
{we L(G)| w is RLB-k}.

Corollary 3.1.2

For any ECF grammar G, and any integer k, L(G)/k is context-

free.

Corollary 3.1.3

Let G be an ECF grammar whose language, L, is not context-

free. ThenV k, L - L/k is infinite.

Proof
Suppose the contrary. If for some k, L - L/k were finite, then

there exists a finite set of ad hoc rules which produce L - L/k. Adjoin

this set of rules to a context-free grammar which generates L/k. This

yields a context-free grammar for L. Contradiction.

It is well known that any context-free grammar whose terminal
vocabulary is a single letter generates a regular set. Using this result
and the above theorem, it can be shown that an identical result holds for
ECF grammars. The idea is straightforward: if the terminal vocabu-
lary is a single letter, there is a bound on the length of productions

emitted by the FST. Hence, the grammar must be rule length bounded.
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Since the language is therefore context-free, it is also regular. We

need only show that the productions are, in fact, bounded in length.

Theorem 3.1.4

Let G = (V, {a}, Po’ X,T) be an ECF grammar, where
T = (K, {a}, A, 6,0, qo, F). Then there exists an integer k such that if

n,[A = Bln, € T(L(G)), then |A — B < k.

Proof

We show the stronger result: if nl[[A - B]]n2 € T(a:':), then

e

IA - B| < k. Since L(G) C a , the desired result follows from this.

Let q1 = 6(qo, al). Since T is deterministic, this is well defined

for all i. Consider the infinite sequence ql, q2, qn, ... . Let the

number of elements in K be denoted by #(K). For some i (i < (#K))
and some j (j < #K)+1), we haveqi = qj and i<j. Let p=j-i.

Since T is deterministic, it must repeat the cycle; hence,

i+k i+tp+k
ql - Littp

q vV t,k=0.

The infinite sequence of states must have the form

2 i-1, i i+1
(a q .

1 i+p-1
Q- q° ... q p

e
38

C )
Any finite sequence whose length exceeds i must have the form

2 i-1, 1 i+l itp-1," i i+l i+
atq? ... g Tlgtgtt L gt gttt [ gits

with n 2 0 and 0 € s < p-2. Since the output depends only on the state,

L. )\(qﬁ, a) V £. Then any output string produced by T whose

let p
length exceeds lpl pll must have the form

1 i-1, i i+p-1,1 i i+s
P et TP ot o

for some n=2 0, 0< s< p-2.
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If such a string contains a substring m, 6 m, where m,, m, € V,

1’772

£ i -
6 € V and m, and m, are not in 6, then |6|< |p1 pl-l"p . .

Letting m, =[[, 6 =A—+f and m, =], this gives the result

claimed. ]

Corollary 3.1.5

Let G be an ECF grammar whose terminal vocabulary is a

single symbol, then L(G) is regular.

3.2 CLOSURE

In this section we will examine the closure behavior of the family
of ECF languages, under various operations. We show closure under
several standard operations and under an operation which may be
interpreted as reversible translation. However, we also show non-
closure under homomorphism (even non-erasing). Hence, the family of
ECF languages does not form an AFL (i.e., abstract family of languages,

cf. [Gins68a]).

Theorem 3.2.1

Let G be an ECF grammar, let L = L(G), and let R be a
regular set. Then the following are ECF languages:
(a) LMR
(b) LU R.

Proof
(a) LM R is a standard cross-product construction. Its
grammar is that of L. with one modification: the states of the new FST

have an additional component which imitates the action of a regular
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automaton that accepts R. The modified FST accepts if and only if
both the regular automaton and the old FST would have accepted.

(b) LU R is a variant of the above construction. Its grammar
is obtained by making two modifications to G. (1) To P0 is added a
set of productions, Po" which generate Z*. If these productions are
written using symbols not in the output vocabulary of T, it is guaran-
teed that members of Po' will never be deleted and that there will be
no interaction between these and other rules. (2) The states of the
new FST have an additional component which is used to imitate the
action of a regular automaton that accepts R. The new FST accepts

if either the regular automaton or the old FST would have accepted.

Theorem 3.2.2

The family of ECF languages is not closed under homomorphism
(even length-preserving homomorphism).

Proof

Example 2.3.1 demonstrates that L = {anba(n+1)m| n

>1, m =2}

is an ECF language. Let h: {a, b} — {a} be a homomorphism, defined by
h(a) = h(b) = a. Let L' = h(L) = {aP¥|p=>2, q>3}. This consists of all
possible strings of a's whose length is non-prime and greater than or

equal to six. Clearly, L' is not regular. Hence, by Corollary 3.1.5,

L' is not ECF. [

Corollary 3.2.3

The family of ECF languages is not an AFL [Gins68a].
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Definition 3.2.1. Let Ll and L2 be languages. The left quotient of L,2

by L1 is defined to be

L\L, ={y|3 x e L, suchthat xy ¢ L, }.

1

Corollary 3.2.4

The family of ECF languages is not closed under left quotient by

regular sets.

Proof

Let L ={a"ba™1™ | n> 1, m> 2}, andlet R=a'b. Then
R\L ={a"™ | r,s = 2} is not regular and thus by Corollary 3.1.5 is
not ECF. O

Given that the family of ECF languages is not closed under homo-
morphism, even length-preserving, is is natural to ask if there is any
class of mappings which insures closure. We observe that non-closure
under the homomorphism h(a) = h(b) = a is due to the identification of
two formerly distinct symbols (i.e., due to loss of information). Hence,
we conjecture that if a mapping preserves information, it will preserve
the ECF property. Under suitable definition of "information preser-

vation', this is indeed the case.

Definition 3.2.2. A homomorphism h:X - A is said to be invertible if

% %
3 a generalized sequential machine (GSM), g, suchthat V we X ,

g(h(w)) = w.

B
A GSM is a finite state transducer in which all states are accepting
states.
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Lemma 3.2.5

If h is an invertible homomorphism, then it is non-erasing.

Proof

Suppose the contrary: i.e., h(a) = e for some a€ %, a# e. Then
Vxe Z*, h(x) = h(xa). In particular, for x = e, we have h(e) = h(ea).
Letting g be an inverting GSM for h, e = g(h(e)) = g(h(ea)) = ea = a.

So e = a, contrary to assumption. [J

Theorem 3.2.6

Let G =(V,%,P_,X,T) be an ECF grammar and let h:Z ~ T be

an invertible homomorphism. Then h(L(G)) is an ECF language.

Proof
A grammar G = (V,Z, X,_lso, T) which generates h(L(G)) is
obtained as follows. Let V = VU E. Extend h so that h: V- V' as
follows: if b € £ then h(b) is already defined; if s ¢ £ then h(s) = s.
1_30 is obtained from P0 by applying h to each production. For example,
if £={a,b}, vy ={A, B}, and P_={A —~ a, (a) ~abB}, then
P_={A = n(a), {(h(a)) = h(a)h(b)B }.
Let g be a GSM which inverts h. T is defined tobe ho T o g,
under the operation of functional composition. (T accepts if and only
if the image of T which it contains accepts.)
For each instance of a terminal symbol, b, in a derivation of G,
a corresponding instance of h(b) will appear in a derivation of G.
T inverts h(b) to recover b, imitates the action of T on b, and applies

h to the output generated. Hence, h(w) € L(G) if and only if w € L(G). [
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3.3 RELATION TO THE FAMILY
OF CONTEXT-SENSITIVE LANGUAGES

The membership problem is said to be solvable for a family of
languages if there exists a procedure which, given any language L of
the family and any string w, decides whether or not we L. 1In
Sections 4.3 and 4.5, we will present and prove the validity of a recog-
nition algorithm for the ECF languages, thus showing that their
membership problem is solvable.

Having shown that w 2 L(G) can be decided by a Turing machine,
we next ask whether this can still be done by a Turing machine in space
n; i.e., on a linear bounded automata (lba). The same question, stated
in terms of languages, is whether ECF languages are context-sensitive.
For the general case, the question is open. As will be shown, we can
demonstrate a procedure which works in space r12 but not in n. How-
ever, for a large class of ECF grammars, we can exhibit containment
in the context-sensitive (CS). We will define this class, prove the

. . 2
assertion, and then discuss space n .

Definition 3.3.1. A production A — o is said to be L-restricted if

|A| € |al. A derivation is L-restricted if all productions used in
the derivation are L-restricted. An ECF grammar G is L-restricted

if V we L(G) 3 an L-restricted terminal derivation of w.

Remark. A production A — « is clearly L-restricted if A € VN and
a # e. The significance of the L-restriction is that it guarantees that
a derivation does not involve a "swell" of substrings belonging to Vr

That is, under the L-restriction, if (w, ) N (ww',e), then IB] < |w'|.
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Theorem 3.3.1

Let G =(V,Z,X, PO, T) be an L-restricted ECF grammar, then

L(G) is a context-sensitive language.

Proof
We construct a nondeterministic lba, M, which performs a legal
derivation of G and accepts if and only if the string so generated is
identical to its input. From this, it follows directly that L(G) is
context-sensitive.
M's tape is divided into three tracks: T1, T2 and T3. T1 con-
tains the input while T2 and T3 are working tracks. Letting '"b6" be a
new symbol reserved to designate a blank tape square, the initial con-
figuration is:
w
¢l "L g
% Wl

M begins its operation by imitating the action of T acting on w,
writing the output corresponding to each symbol of T1 directly beneath
it on T3. This requires (1) a symbol reserved to indicate e-output,

(2) possible compression by a factor of k, where k is the length of

the longest string emitted by T for any single input symbol. Since k
is fixed for the grammar, this compression presents no problem and
is subsequently ignored. As M imitates T, it keeps track of T's state.
When all of w has been processed, M rejects if the simulated state of
T is not an accepting state. After this first step has been completed,

M initializes T2 to the start symbol X, so that the tape contains
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{ W
- T(w)
M next goes into a cycle in each step of which it imitates a
rewriting of the leftmost member of I on T2. At the beginning of some

step, let the contents of T2 be

b3

%
xYB/B'e where xe€eX, Yel BeV .

We refer to Y and to the point below it on T3 as the derivation point.

The portion of T3 lying to the left of the derivation point is the output
of T given x as input. Hence', this substring determines the changes
to the local production set at the time that Y is rewritten by the
grammar. It is therefore possible to ''choose'' a member of the local
production set at random. M either (1) chooses a member, ¢, of P0
and then scans T3 from its left boundary to the derivation point, to
verify that ¢ is not deleted, or (2) scans T3 leftward from the deri-
vation point, choosing an added production, ¢, at random, and then
scans rightward from the point of choice to the derivation point, to
verify that ¢ is not subsequently deleted. In either case, if ¢ is deleted,
then M rejects. |

Let the production so chosen be A — @, where A €1l and o€ y+.
The string B is moved (lal - |Al) tape squares to the right along T2,

and « is copied into the region between x and 8. T2 then contains

! ¢ 3
xaB/E)'Q where x € T, a€y+, BeV .

If an attempt is made to move [ off the right end of T2, then M rejects.

The above cycle is repeated until T2 contains no members of I.
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M then compares the contents of T1 and T2 and accepts if and only if

they are identical. Since each step of the cycle corresponds to a legal
generation step, and since M has previously verified that T would have
accepted w, it follows that if w is accepted by M, then w € L(G). Con-
versely, if w € L(G), it has at least one L-restricted derivation which

M can imitate. Hence, the language accepted by M is precisely L(G). O

Corollary 3.3.2

The family of L-restricted ECF languages is a proper subset of

the family of CS languages.

Proof

The above theorem shows that the L-restricted ECF languages are
a subset of the CS. To show that they form a proper subset, we observe
that the language used as a counter-example in proving Theorem 3.2.2
was L-restricted. Hence, the family of L-restricted ECF languages is
not closed under non-erasing homomorphism. Since the family of CS lang-

uages is closed under non-erasing homomorphism, the result follows. [J

Remark. Note that the above theorem and corollary are valid if the
L-restriction is redefined to assert the weaker condition |A] < Kleal| for
any fixed constant K. Also, they continue to hold if productions A — e,
where A € VN’ are admitted. The proof of the latter assertion
involves the following construction: M ''guesses'' which symbols on T2
will generate the empty string, erases these symbols, records the
guesses, and later verifies their legality.

If the L-restriction is completely removed, then the construction
used in Theorem 3.3.1 will not yield a recognizer that operates in

space n. Indeed, it may be that (w, ) E5 (ww', e) with 1Bl >lw'l, so
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that M will attempt to move B off the right end of T2 and will fail.
However, with some modifications to handle erasing rules, the construc-

tion will yield a recognizer which operates in space n2.

Theorem 3. 3.3

Let G be an ECF grammar. There exists a constant K such that
L(G) can be recognized by a nondeterministic Turing machine M having

tape bound an.

Proof

We use the construction employed in proving Theorem 3. 3. 1 with
certain modifications. Consider the cycle in which M imitates a re-
writing of the leftmost member of I on T2. At the beginning of some

step, let the contents of T2 be
* *
xYB’ﬁz where x€Z', Yel, BeV.

Let the production selected to be used in rewriting be Y = a. If ¢ = e
then M rejects, so that erasing rules are never applied directly.

Instead, M operates as follows. The rewriting step results in
2! b
xap b where xe€Z , a€eV, PBeV.

The string ¢ is composed of one or more elements of V, say a = A1 v
An where Ai € V. Some of the A's may be members of I; M nondeter-
ministically guesses which of these would rewrite to the empty string
in a derivation of w by G. M marks these A's specially. Hence, at

a given step in the cycle of imitating G, T2 has the form
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xB,.B B.C,C C,. B,,B Ba, ©,,C C

11712 111 11712 131 21722 212 2123 2j2
BB B.. C,,C c.. o
N17N2 N1N N1™N2 NjN
where
Lo Jy 21 vV k
G q €l and is marked to indicate a guess that C
P will generate the empty string P

Brs eV

By the construction used, each Brs will generate at least one terminal.
Hence, if the derivation is to produce w, we must have N < 'w ' If N
ever exceeds le then M rejects.

We can now state the rewriting step more precisely. At the begin-

ning of some step, let the contents of T2 be

b3
xZ2p®%.  where xeZ¥, Zel, peV.

If Z isa B¢ (i.e., predicted not to rewrite to the empty string) then
rewriting proceeds as discussed above: some non-erasing rule Z —= a

is applied. If, however, Z is a Cp (i. e., predicted to rewrite to the

q
empty string), then M checks the prediction. This entails determining

whether there is a derivation sequence Z % e using the local production
set at this point. Since no rules can be added to the local production
set while rewriting Z to e, this verification requires no additional
storage. If the verification fails then M rejects.

The cycle is repeated until T2 contains no members of I. M then

compares T1 with T2 and accepts if and only if they are identical. As

in Theorem 3. 2.1, the language accepted by M is precisely L(G).
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To obtain the space bound, consider the complete substring

Cklck2' . .ijk, for some k. Since each th

the empty string and hence leave the local production set unchanged,

is predicted to produce

we lose no information if duplicate elements are removed. Since
checking for duplicate elements requires no additional space, M can
remove them during the rewriting step without affecting the space

bound. Hence, we assume that Ck Ck' contains no duplicates,

1... Jk

for all k.
Further, every th in such a substring must appear in a produc-
tion. Either this production is in P, oritis in T(w). Hence,

| < |T(w) | + K
Kk

|c C

k1°"* “kj 2

where K2 is the number of distinct elements of I found in the initial
production set Po. Letting K1 be the maximum number of symbols

emitted by the FST for any single input, we have

(€50 con

ijkl < K, |[w|+K,.
Hence, the length of all Cpq's at any point in the cycle is bounded by

(K, |wl+Ky) N < (K [w]tK,) |w].

Since all qu's generate at least one symbol, the number of qu's must
be = Iw , Since each qu must also appear in a production, the length

of all qu's at any point is also bounded by
(K, |w I+K2) [w.
Hence, the number of symbols on T2 at any point is bounded by
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[w|+ 2wl |w|+K,).
Therefore, taking K > 2(K1+K2) + 1, M can recognize any string w in
space K,wlz.

Remark. The result we shall present in Sections 4.3 and 4. 5 can be

used to obtain an analogous result for recognition by a deterministic

Turing machine. We will exhibit a recognition algorithm for a random
access machine which runs in time and space n8. It follows, therefore,
that the same algorithm will have polynomial bounds when modified to

run on a Turing machine.

3.4 UNDECIDABILITY RESULTS

Although it is possible to decide whether a given string is gener-
ated by a given ECF grammar, we show in this section that it is not
possible to decide whether an ECF grammar generates any terminal
strings whatever. That is, the emptiness problem for ECF grammars
is undecidable. This property appears fundamental to ECF grammars.
It continues to hold even when a number of strong restrictions are
placed on the grammars. In Section 5.1, we will discuss the signifi-
cance of this result in applying ECF grammars to the description of

programming languages.

Theorem 3.4.1

‘)
The question L(G) = @ is undecidable for ECF grammars, even
under the following restrictions:
(a) the L-restriction holds,

(b) no productions are ever deleted,
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(c) a production generated by the FST may have only terminal

symbols on its right-hand side.

Proof

For any Turing machine M and any initial configuration C, therc
exists (effectively) an ECF grammar G = %(M, C) such that L(G) # @ if
and only if M halts when started in configuration C. From the undecida-
bility of the halting problem for Turing machines follows the undecida-
bility of the emptiness problem for ECF grammars. The construction
is as follows.

Let M =(K,Z, T, 6, q, F) be a Turing machine. Assume
KT =@, sothat an instantaneous description may be represented
unambiguously by a string § aqf$ where @, ¢ 1“*, g€ K, and "§" and
"$'" are special symbols which delimit the instantaneous description.

Let an initial configuration of M be C0 = aquBo. The corres-
ponding ECF grammar (for M applied to CO) is given by

G =(V,z, P_.X, T) where P is given by:

X - CN

C—=5 % 9o Bo$

N - CN.
The finite state transducer, T, is defined so as to map each input ID
§aqB$ into an output production [C - §a'q’ B'$ Il such that
aqf I-M— o' q' 3'. That this mapping can be carried out using finite
memory is clear: In obtaining a successor ID, the state symbol is
moved at most one square in some direction, and at most one other
symbol is changed.

Hence, a derivation of G has the form
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X=3 CN=» §a0qOBO§N

— Sa,q B }CN

= §Q’oqoBo$ §a’lqlBl$N

P §aoq030$ S §anann§N
where, for all j (0 < j < n),

Cj = aj q:i Bj either is the immediate successor (under a derivation

of M) of Cj—l’ or is equal to Ck for some k (0 < k < j).
The FST has one additional function. If it ever emits a production
[C — §aq315 | where q is a final state of M, then it also emits a
production [N — h]]. Hence, if the Turing machine M ever reaches a
final state, there will be at least one derivation of G having the form
X =5 Sa, a,8,$ - .- Se,a B $h
so that L(G) # (. Since this is the only way N can ever be rewritten

directly to a terminal string, the converse holds. []

Corollary 3. 4.2

The following are undecidable for ECF grammars:
(a) whether L(G) is context-free, finite, or regular,
(b) whether G is L-restricted,
(c) whether derivations of G involve no deletion of productions,

(d) given k, whether G is RLB-k.

Proof

Clearly, all the above properties hold for any ECF grammar
whose language is empty. Also, for each of the above, there exists
an ECF grammar G such that the property in question does not hold.

Example 2. 3.1 gives a grammar G such that L(G) is not context-free,
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finite, or regular; also, G is not RLB-k, for any k. Example 2.3.3
gives a grammar which is not L-restricted. It is easy to construct
a grammar such that its derivations may involve deletion of productions.
Given the desired grammar G = (V,Z, PO,X, T), the proof is
identical for all four of the assertions. Let G' = (V', 2!, P:),X', T') be
the grammar used in the proof of Theorem 3.4.1. We construct a new
grammar G" = (V",Z", Pg,X", T") from G and G' such that the property
in question holds iff L(G") = @.
Assume VN V' =¢. Let V" = VU V' U{m} and let =" =
> U = U {m} where m is a new symbol. Let P!=P_ UP!. Let
Xt = X', T" is constructed from T and T' as follows. T" contains an
image of T and a modified image of T'. The start state of T" is that
of T', so that T" initially imitates T'. The modification is that where
T' would emit the terminal production [ N = h]l, T" emits the produc-
tion [N = mX], where m is a special marker and X is the start symbol
of G. T" then goes into a special state in which the only acceptable input
is m; if m is found as the next symbol, then T" enters the start state
of T and subsequently imitates T.

By construction,
L(G") = {W'mWIw' € L(GY), we L)}

Hence, if L(G") # ¢ then the property in question does not hold. If
L(G") = @ then the property clearly holds. Also, L(G") = @ iff L(G') =
@. Since the latter question is undecidable, the property is undecid-

able. O
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3.5 RESTRICTED CASES

We turn to consideration of the classes of languages produced by
imposing various restrictions on ECF grammars. Each restriction
limits in some fashion the form of a new production. By studying the
classes of languages thereby produced, we obtain a more precise under-
standing of the generative power of ECF grammars.

In Section 3.1, the notion of a rule length bounded ECF grammar

was defined, and it was shown that such a grammar generates only a
context-free language. Another restriction which leads to producing
only the context-free languages is obtained by considering ECF gram-
mars in which all productions emitted by the FST are deletion rules,
i.e., of the form [A # e¢]. Since rules which delete productions not
in Po may be ignored, such a grammar can be imitated by a push-down
automaton. Hence, its language is context-free.
A more interesting type of restriction is that yielding families of
languages which both:
(a) properly contain the context-free,
(b) are properly contained in the ECF.
We consider two restrictions which have this property:
(1) grammars in which new productions have only terminal symbols
on their right-hand side,
(2) grammars for which there is a bound on the number of new
productions.
Each of these demonstrates a facility of ECF grammars which can be

omitted only with the loss of generative power.
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Definition 3.5.1. A derivation is I-restricted if V productions ¢ used

in the derivation, either ¢ € P_ or ¢ = A — a where a € 5. An ECF
grammar is I-restricted if V w € L.(G), 3 some I-restricted terminal

derivation of w.

Definition 3.5.2. Let G =(V, Z, PO,X, T) be an ECF grammar and let

w € L(G). The string w is rule number bounded with constant k

(RNB-K) if T(w) has no more than k substrings which can be interpre-
ted as productions being added (i.e., of the form "[A — o]").
A grammar G is RNB-k if V w € L(G), w is RNB-k.

Since the grammar of Example 2.3.1 is I-restricted and RNB-1,
it follows that the family of I-restricted languages and the family of

RNB-k languages (for any k = 1) each properly contain the context-free.

Theorem 3.5.1

The family of I-restricted ECF languages is a proper subset of

the. family of ECF languages.

Proof
Consider L = L1 U L2, where
L1 = {anbc(n+1)m|n 21, m= 2},

L, = {a"pd™ DM 5y,

A\
)
—

An ECF grammar which generates L is as follows. The initial pro-

duction set is:

X —-A b RN

A —-a A Ia
N - R N | R
E—-cld
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The finite state transducer is given by:

oY
a/E

a/[R =~ E O b/E |

where F = {q2, q3}. Note that this grammar is not I-restricted, nor
can it be modified to be so.

Let G = (V, g, PO,X, T) be any ECF grammar, not necessarily the
above, whose language is L. We shall demonstrate that G is not
I-restricted.

Clearly, L is not context-free. Hence, G is not rule length
bounded. Further, for any k J at least two strings w, € L1 and
W, € L2 which are not RLB-k. Indeed, suppose the contrary. Then
3 k such that either L,

context-free. But since L

or L2 is RLB-k, say Ll' Hence, L1 is

1 can be mapped by a homomorphism into
£ m
the language of Example 2. 3.1, this is impossible. Let w, =a 1bc
JJ m
and let W, = a 2bd 2.

1

Let the number of states in T be s and let the maximum length
of output emitted by T for any single input symbol be N. Let the length

of the longest production in Po be P Let k > maximum (pm, 4N -« (st+1)).
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Let l'I1 = f and II2 = Togs voes Mo be derivations of w

T10° == Tin, . 1
and Wo, respectively, using productions d>1 and ¢2 such that |¢1 | >k
and [¢,]> k.

Since |¢i| >P.s ¢i must have been generated by T, for i =1, 2.

m
Since |¢i| >4N * (st1), ¢, must have been output while the b was
read in. Indeed, otherwise ¢i would be the output corresponding to a
string of a's, c's, or d's. However, this is impossible, for given only
a single input, T cannot generate N -+ (s+1) symbols without being in a

loop. If in a loop, then T cannot output a capping '']l'' to terminate

the production. (This is essentially the same argument as used in the

proof of Theorem 3. 1.4.) Hence, if 4)1 € Pﬁ for any j then ﬂlj
1.] %
(asbct,y) for some integers s,t and some y € V . Similarly, if

¢, €P then 7,., = (a"'bd’, s) for some u, v, and §&.
nzjl 2j

For convenience of notation, let f

N, N !

denote either ¢ or d. Let a 'b fi ' be the substring of LA which is

= ¢ and f2 =d, so that fi can

mapped by T into [[ ¢i]]' Let [[q>i]] =4, tpli) " ¢! where {,, q;l.l), and

N. N!
4:{ are the images under T of a ', b, and fi Y respectively. Since

[I¢ill is capped by a final "] "', N! < s+1; hence Iq;{, < N(s+1). Since
o | + Ilp?l + gl = o] > 4N(s+1), we have lg; | > 2N(s+1). Let ¢;
be the first 2N(s+1) symbols of qu. The only input to T up to the end
of Lpi° is a's; since T is deterministic, 4;1 = 415. Further, since the
productions ¢1 and ¢2 are used in the derivation, they contain no

member of V whose length exceeds N(s+1). Hence,

¢‘i=¢§=[[A—-an where A €1, aeV+, n€V='<.

Therefore
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¢ =A = e,

+ b3
where A €I, ae€eV , ﬁiey_.
¢2=A~aﬁz -

Suppose G were I-restricted. Then q>i = A - aﬁi where a € S
Since I'I1 uses q>1 and Hz uses ¢>2, it follows that Wy and W, must
have the forms

k

= 1 ! "
172 bwl a[31w1

g
I

k2
a bwbaﬁzwg

Wa

where e # e. But by hypothesis,

£ m
w, =a 1bc -
{ m
Wy = a 2bd 2.
| e
Hence, c = w'l aﬁl wg and d = w'2 “52‘”5 which is impossible,

since a¢ must consist of c¢'s in one case and d's in the other. Contra-
diction.

We conclude that if L = LL(G), then G is not I-restricted. [J

Theorem 3.5.2

For each k, the family of RNB-k ECF languages is a proper sub-

set of the family of ECF languages.

Proof

Consider the language

3,3

L = {abac a2ba2ca ba'c ... anbancl n =1}, By the theorem of

Bar-Hillel, Perles, and Shamir [Hop69] this language is not context-
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free. It can, however, be generated by an ECF grammar. Let
G =(V,2,P_,X,T), where £ ={a,b,c}, Vi ={X,Y,Y" BB}, and P is
given by:

X = Y'Yy’

Y'" -aB

B —-b|lcYY]|c

B' —blecY'Y'|c.

The finite state transducer is
T =(K,Z.A, G.X.ql,F),
where

K: {ql’qZ""‘qz;))
A=VyUALL. 1. = =}

and

F=1{q,. qs}.

The transition and output functions are as follows:

5(q1,a):q2 Ma,, a) =[Y - aa
6(q,, a) = qq Ma,, a) = a

6(q2,b) = qy )\(qZ,b) =B']
6(q3,a) =q, )\(q3, a)=[Y"4a
6(q,,a) = q, May.a) = a

8(qy. c) = ag May. ) =B]

6(qg, a) = qg Mag,a) = [ Y' — aa
6(qg,a) = qq Mgg,a) = a
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8(ag, b) = q, Mag.b) = B ]

6(q,.a) = qq Ma,,a) = [Y 4 a
6(q8’ a) = q8 )\(q8: a) = a
6(q,,c) = q Mag,c) = B'].

8 1 8

The FST alternates between two activities: (1) mapping ai into a pro-
duction with ai+1B as its right-hand side, (2) mapping ai into the
deletion of a production with aiB as its right-hand side. Hence, each
substring aibaic, when mapped by the F'ST, first creates a production
which will allow generation of its successor and then deletes the pro-
duction which is used in generating itself.

Let G = (V,f,f’o,X,T) be an arbitrary ECF grammar such that
L(G) = L. We claim that for any given intcger k, G is not RNB-k.
Suppose the contrary, i.e., 3 k such that G is RNB-k. Let
w_ = abac a'hate .. .8 bas. Conaider T(wn). Since G is RNB-k, then
for any n, T(wn) contains at most k substrings which can be interpreted
as added productions. That is, the greatest number of such substrings
which can appear in any T(wn) is some s < k. Let this be attained for

the string W For all n > m, the deterministic action of T guaran-

tees that T(wn) contains these productions; hence, it contains no other

added productions. Therefore, {wn , n = l} is rule length bounded.
Since L = {wnln 21}, L is context-free. As this is impossible, we

conclude that G is not RNB-k for any k. O

Collecting the above two theorems and the remarks which preceded

them, we have the following:
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Theorem 3.5.3

The families of I-restricted and RNB-k ECF languages each
(a) properly contain the family of context-free languages,

(b) are properly contained in the family of ECF languages.

Remark. We note that these two restricted classes of ECF grammars
share another trait: an undecidable emptiness problem. The assertion
has been proved for the I-restricted case in Theorem 3. 4. 1; the proof

for the RNB-k case is given by the following theorem.

Theorem 3.5.4

The emptiness problem is undecidable for the class of RNB-k

grammars, for any k = 2.

Proof

—+
Let {(al,ﬁl), (a2,[32), v, (an,ﬁn)} where ai,ﬁi € >~ be a Post
correspondence problem. We construct an RNB-2 grammar whose
language is non-empty if and only if the correspondence problem has
a solution.

The initial production set Po is given by the schema

X - AdBdN
A-’IOiAai | 10'ce, i=1,...,n
B-—101Bpi ] 1o‘c[si i=1,...,n

where 0,1,c,d are new terminal symbols not members of =. The FST

is specified by its state transition diagram
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1/[N =1
/
(VyZd); CCB
d/)
Q
1/[{1
/
(Vy'i:d}), ch
d/) = t]

oS0

Let LA be the context-free language generated by taking the start
symbol to be A and using only productions in Po with A as their left-

hand side; let L., be analogously defined. A derivation of the ECF

B

grammar must have the form
(e,X) = (e,AdBdN)
i;(wAd,BdN) where WAGLA
at which point the local production set is
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P U{n - <WA>}.
The derivation must continue

%*
=‘—>(wAded,N) where Wa €eL

at which point the local production set is
P oU{N=(w,), (wg) - t}.
Hence, the derivation must continue

=> (WAde d, (WA>)-

This terminates iff w, = wg iff L, N Ly # @ iff the correspondence

B
problem has a solution. O

3.6 RELATION TO OTHER GENERALIZATIONS OF
CONTEXT-FREE GRAMMARS

To date, at least six generalizations of context-free grammars
have been proposed: scattered context [Greib68], table grammars
[Whit68a], [Whit68b], [Whit68c], [Whit69], indexed grammars [Aho68],
macro grammars [Fisch68], programmed grammars [Ros69], and
grammars with control sets [Gins68b]. To complicate matters, some
of these have two or more subfamilies. With the notable exception of
[Fisch68] (which establishes definite relations to [Aho68], little work
has been done in determining the hierarchy of these various models.
We shall not attempt to undertake such a study in this paper. Instead,
we shall relate the family of ECF grammars to what we feel is the most
significant family above: the indexed languages.

These are of special interest, for they are generated by a number

65




of apparently unrelated formal systems: indexed grammars, OI macro
grammars, nested stack automata [Aho69a), and pushdown automata in
which the stack elements are themselves stacks [Aho69b]. This sug-
gests that the family embodies some central, machine-independent notion
and hence will be of particular importance in the study of formal lan-
guages,

Having thus justified a comparison with the indexed languages, it

is unfortunate — but nonetheless of interest — to assert:

Theorem 3.6.1

The families of ECF languages and indexed languages are incom-

mensurable; i.e., neither family is a subset of the other.

Proof

Fischer [Fisch68] shows that L ={a" | n is non-prime and = 2}
is a basic macro language (see [Fisch68] for definitions). Hence, L is
an OI macro language and equivalently is an indexed language. In view
of Corollary 3.1.5, L is not ECF,

To show the converse, we construct an ECF grammar which
"imitates" a universal Turing machine and show that the language it
generates cannot be an indexed language.

Let M =(K,Z, T, s, . F) be a universal Turing machine. As
noted in the proof of Theorem 3. 4.1, an instantaneous description of
M can be unambiguously represented by a string §aqp 5 where e, € 1"*,
q € K, and § and d are special delimiters not in I"' or K.

Coasider the ECF grammar used in the proof of Theorem 3. 4.1

modified so that its initial production set is
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X -~ §S qOS § N
5 = e | as Vaex
N-CN

A derivation in the new grammar begins

X=>§Sqos§N
% *
= §aq0[3§N where e,p €T
=>§aq BJCN

Hence, a derivation generates an arbitrary initial configuration and then
imitates the sequence of instantaneous configurations produced by M
when started on this initial configuration. The language generated by

the ECF grammar is
L= {Cocl -..C h | C, 1s an initial configuration of M
and V j=1,...,n eitherC. , — C. or
-I'm )

C.=C, for some k (0 <k < j).

J k
Hence, a string in L is an encodement of a halting computation of M.
Consider the gsm g which maps each symbol into that symbol,

up to and including the first ' 5 '" it encounters and thereafter maps

each symbol into the empty string. Then

g(L) = {co | M halts when applied to initial

configuration Co} .

Since the halting problem is undecidable, g(L) is not recursive.

Suppose L were an indexed language. Since the family of indexed
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languages is closed under gsm mappings [Aho68], g(L) would be an
indexed language. However, since the indexed languages are recursive,

this is impossible., Contradiction. (]

Remark. For two other families — the scattered context languages
and the cfpg programmed grammars — it is possible to exhibit lan-
guages which are not ECF. The converse questions, however, are

open.
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Section 4. PARSING

4.1 MOTIVATION

We now turn to the problem of parsing strings genecrated by an
ECF grammar. As claimed in Section 3.3, we will demonstrate that
legal strings can, in fact, be recognized, i.e., that the ECF languages
are recursive. However, the theoretical question is of only secondary
interest. If ECF grammars are to be used to specify programming
languages, we require not merely a recognizer but a parser. Further,
the parse algorithm must be sufficiently economical in time and space
to be of practical utility. The algorithm we will exhibit has this

property.

4.2 AN ALTERNATE FORMALISM FOR DERIVATIONS

In Section 2.2, after defining an ECF derivation, we noted that an
alternate definition exists. As this alternate definition is far more
efficient for computational purposes, it is a preferable one to use in a

discussion of efficient parsing.

Definition 4.2.1. Let G =(V, Z, PO,X, T) be an ECF grammar.

A configuration of G is defined to be an element of (Z*, y*, KT A;, S)
where KT is the state set of T, where AT is the output vocabulary of T,
and where S is the set of possible production sets over V.

The transition between a configuration ¢ and a possible successor

Y' is denoted by ¢ ¢ ' and is defined as follows.
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(1) If (A - a) ¢ P, then (w,AB,q,x,P)F(w,eaB,q, x, P),

(2) If a€Z, then (w,aB,q,x,P) (wa,B,q',x', P') where q' = 6(q, a),

P’ = IP(P, x- \(q, a)), and where x' is obtained as follows. Let

y =x-\q,a). If y does not contain the symbol ""]]"", then let

x' =y. Otherwise, writey =y, - 1- Yo Where y, docs not

contain " J"; let x' =y, .

Let |-—rrl and |i denote the m-fold closure and transitive closure of |,
defined in the usual fashion.

The notion of configuration is related to that of instantaneous
description (cf. Section 2.2) as follows. If 7=(w, ) is an ID, an
equivalent configuration is given by ¢ = (w, v, 6(qo,w),y, P‘n) where y is
that substring of T(w) which is right of the rightmost instance of " ]".
The configuration ¢ differs from the ID 7 in that it explicitly carries
(1) the local production set, and (2) part of the information needed to
compute the local production set of a successor configuration. Gener-
ation expressed as a sequence of configurations simply avoids the total

recomputation of P” at every step.

Theorem 4.2.1

For any ECF grammar, (e,X) e (w,v) =7 if and only if 3 y

such that (e, X, q,.e, PO) F= (w, v, 6(qo, w),y, Pﬂ) .

Proof

Obvious, by induction on m. [J

In view of the equivalence of ID's and configurations, we will be
somewhat loose in our notation. We will use the latter in obtaining

time bounds and revert to the former when concise notation is desired.
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4.3 AN ADAPTATION OF EARLEY'S ALGORITHM

Of those parse algorithms which handle the entire family of
context-free languages, Earley's [Earl68] seems to be the best. It
matches the best known time result, n3, for the general case. For a
number of subfamilies on which a special algorithm will run faster (e.g.,
Kasami's time—n2 algorithm for unambiguous grammars [Kas67] and
Knuth's time-n algorithm for LR(k) grammars [Knu65]), Earley's algo-
rithm runs at the rate of the special case algorithm. Further, it attains
the faster rate automatically, without being instructed that the language
in question falls into a special class.*

For our purposes, Earley's algorithm has another useful trait:
it places no restrictions whatever on the grammar. Unlike most
algorithms, it correctly handles circular grammars, disconnected
grammars, and grammars which generate strings having an infinite
number of parses. The results of Section 3.1 demonstrate that most
normal forms for context-free grammars (e.g., intermediate constitu-
ent form or Greibach normal form) are not normal forms for ECF
grammars since these normal forms put bounds on the length of produc-
tions. Hence, Earley's algorithm, which does not depend on a normal
form and which works correctly on any set of productions it is given,
is particularly attractive.

We will discuss how Earley's algorithm may be adapted to the
parsing of ECF languages, will prove that the resulting algorithm is

valid, and will exhibit time and space bounds. We will assume

This is particularly relevant in view of the undecidability results
connected with the above special classes.
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familiarity with Earley's algorithm as described in Sections II, IV, V,
VI, XIV, and XV of his thesis. Definitions and notation will be close
to those of Earley. We will also follow Earley in first specifying a
recognition algorithm and then discussing how this can be modified to
produce a parse.

An intuitive description of our recognition algorithm can best be
given in terms of Earley's. The latter operates on two inputs: a string,
ay ... a, and a grammar, G =(V, Z, X, P). It scans the string from left
to right and as each symbol a; is scanned, it constructs a state set Si
which represents the condition of the recognition process at that point.
Si is a function of three variables: (1) a;, (2) the previously con-
structed state sets, {Sk‘ k < i}, and (3) the set of productions, P. For
context-free grammars, P is constant. To allow the algorithm to
recognize ECF strings, we simply make P variable. For each i,

By IP(PO, T(a1 ai)) is computed and P, is used in place of P.

One point has been suppressed in the above paragraph. Earley's
algorithm also utilizes a k-symbol look-ahead, where k is any fixed
non-negative integer. When processing the input symbol aj, it con~-

siders a to eliminate false paths as soon as possible. While

i+1 " Ptk
most of Earley's algorithm carries over to the extensible case, the
look-ahead feature does not. In his algorithm, look-ahead consists of
verifying an expectation that after some symbol A has been construed
in the input string, the next k symbols must be some given string «.
In the ECF case, the production set may change while A is being con-

strued, thereby invalidating the expectation a. Hence, we shall first

consider an algorithm which involves no look-ahead, i.e., k = 0. Later,
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we will discuss how this algorithm can be further modified to include
partial look-ahead.

A second point which requires discussion is the fact that
Earley's algorithm requires all input strings to be padded on the right
by a distinctive symbol, say '4'", where - ¢ Z. This requirement
can be satisfied in one of two ways. The recognition algorithm can
take its input, a, ... a , and concatenate to it the symbol "4'" as the
(n-i-l)St element. Alternatively, the requirement can be cast as a con-
dition imposed on the grammar: i.e., that the start symbol be a
special symbol Do which appears in a unique production

D, - X ~
and that ''4"' appears in no other production. The two methods are
entirely equivalent for all practical purposes. However, the first
method would induce clumsy notation in later proofs, for it requires
special handling of the pad symbol. Hence, we adopt the latter con-
vention. That DO and - appear in only one production of Po may be
imposed as part of the definition of ECF grammars; to insure that
they appear in no new production, we require that DO and - are not
members of the output vocabulary of T. We stress, however, that
this convention is made for convenience only and involves no loss of
generality.

We now turn to a precise description of the recognition algorithm.
For each symbol a; scanned, two actions are taken: (1) the local
production set, Pi’ is updated, (2) the state set, Si’ is computed. The
former can be performed by a slight modification of the technique

described in Section 4.2.
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Let ¢ = (w, B, q, x, P) with successor ¢' = (wZ,B',q',x",P’). We
observe that:
(1) if Z = e, then P' = P,
(2) otherwise, P' depends only on Z, q, x, and P.
Hence, to compute the local production set, P', we need record only the

3rd’ 4th, and Sth components of a configuration.

For any string aj...ay and any i (0 < i < n), define a string

state Qi as follows:

(1) Q, = (qo, e,P ),

(2) for (1 €1i < n), let Qi = (qi, Xi’Pi)’ where
ql = 6(q1_1; 3.1)
P = PPy, x5y May_y. 20
X, is that substring of X _1° Mqi—l’ ai) which is to the right

of the rightmost instance of " ]|".

If Qi = (qi, xi’Pi) is a string state of a; ... a, then Pi is the local pro-
duction set for aj ... a;. Note that we may view the above definition as
a procedure for computing Pi' As each symbol, a;, of input is read,
Qi is computed from a; and Qi—l'

This specifies Pi as a set of productions. It is useful to assume
that these productions are indexed from 0 up to some Ni' We may
assume indexing of the initial productions with d)o = DO - X 4. As
new productions are added in forming Pi’ new index numbers are used.
When a production, say qu_, is deleted, its index number, j, is tagged,
signifying that the production is inactive. If such a deleted production

is added again, the tag is removed.
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Another useful notation is to denote the pth production as
=D -C.C,...C -
d’p P pl "p2 pp

where Dp,CpiEK for i=1,...,p.

Having specified the computation of Pi’ we can describe the recog-

nition algorithm itself.

Definition 4.3.1. A state is a triple of integers (p, j,f). A state set

is an ordered set of states. A state is added to a state set by placing

it last in the ordered set, unless it is already a member.

Algorithm 4.3.1 (ECF Recognizer)

This is a function, RECF, of two arguments: an ECF grammar

G and a terminal string a. ... a . It has value true or false (accept

1

or reject) and is computed as follows:

Let Si be empty (1 < i < n).
Let PO be as specified in G.
Let S_ = {(0,0,0}.

Let Qo = (qo, e, Po).

Let i=1 and go to LOOP.

LOOP:
Process the states of Si in order, performing one of the following

three operations on each state s = (p, j, f):

1. (Predictor) If j#p and C then V ¢q € P, such that

p(j+1) €I,

Dq = Cp(j+1)’ add (q, 0,1i) to Si'

a., then

2. (Scanner) If j#p and C € ¥, then if C ¥

p(j+1) p(j+1) ~

add (p,j+1,f) to Si+1 .
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3. (Completer) If j =p, then for each (q, £, g) € S; (after all states

have been added to Sy) such that D add (q, ¢+1, g

o =~ Cale+1)
to S..
1

If si+1 is empty, then reject.
If i=n-1, Sn = {(O, 2, 0)}, and 3 q € F such that Qi = (q,xi,Pi),
then accept.

Otherwise, let i = i+1, let Qi be computed as described above, let Pi

be its third component, and go to LOOP. end

Comparing this to Earley's recognizer, it will be seen that this
differs from the latter only in the following respects. (1) In the
predictor, the production set used is variable. (2) Earley's look-
ahead computation via his function H, is absent. (3) The last step of

k

the main loop involves computing the local production set Pi'

4.4 A TIME BOUND

In assessing time and space usage of an algorithm, two conditions
should be considered: (1) expected usage in the normal case,
(2) bounds for the worst case. Note that these may differ greatly. In
this section, we discuss the latter. Specifically, we seek a time bound,
for since each step of the algorithm uses at most a constant amount of
space, a space bound is obtained directly from a time bound.

To obtain such bounds, one must consider an implementation and
a machine model on which the implementation is based. We agree with
a contention made by Earley that the most significant properties of real

computers are most accurately represented not by a Turing machine,
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but by a random access machine. This model has an unbounded number

of registers containing non-negative integers and referenced (addressed)
by successive non-negative integers. It is assumed that some dis-
tinguished register holds the constant 0. Primitive operations on these
registers are: (1) copying the contents of one register into another,

(2) comparing the contents of two registers, (3) adding or subtracting
the constant 1 from the contents of a register (0-1 = 0). A register
may be referenced either directly or indirectly; i.e., its address is the
contents of a directly referenced register. Referencing by successive
integers allows immediate access to elements of structures which
behave like arrays. Indirect addressing allows use of list processing
techniques.

Note that this is a very powerful machine model. For example,
such a machine can compute any recursively enumerable set, even if
equipped with only three registers. However, such computations
involve unrealistic amounts of time and Goédelizations which make the
register contents unrealistically large. For those algorithms with
which we shall be concerned, time and the magnitude of register
contents will be more reasonable.

We begin by considering an implementation of the procedure
which computes, for each stage of the scanning, the string state Qi
with its local production set Pi' Let ay ...y be the substring scanned
at some point. Let Si = {AI(A—-a) e P, for k< i} U

{BI(A——QBB) € P, for some o,f3 € y* and k< i}.

k
Si is maintained as a tree structure and is updated for each input symbol

scanned. For example, the set of intermediate symbols
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{A, (ab), (ac), (aaa)} would be represented by the structure:

> @

Updating § involves tracing down branches and possibly adding new
ones.

This structure serves as a symbol table. All instances of
members of I are replaced by pointers into §. Hence, aside from the
computation required to maintain § and to perform table lookup, the
implementation can be carried out as if an infinite set of symbols were
available.

For each A € Ii’ those productions which have A as left-hand
side are kept in a tree structure similar to the symbol table. For each
production, status (active or inactive) and length are recorded. The
production tree is updated as each input symbol is scanned by the follow-

ing procedure.
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Let the string scanned at some point be a with string

1 3.1

state Qi—l = (qi-l’xi-l’Pi-l)’ where Pi— is the symbol tree. Let

1

Qi = (6(qi_1,ai), X, Pi) where X, and Pi are given as follows.

(1) If x,_,-Maq,_;,a,) does not contain the symbol " J}"", then no
productions have been completed. Hence, x; = x,

This takes at most some constant number of steps.

* Mq;_;,2) and
and Pi = Pi-—l'
(2) If X;_q° Mqi-l’ a;) does contain "J", then there may be one
or more productions to process. For each of these, the following is
performed.
(a) Its intermediate symbols are encoded into pointers, new
symbols in the symbol tree being made when necessary.
(b) The encoded production is looked up in the production
tree. If the production is to be added and is not found, then an
additional entry is made in the tree. If the production is found

in the tree, its status is updated: to active if the production is

being added, to inactive otherwise.
This gives a representation of Pi'

To obtain a time bound for this operation, we recall that the
number of input symbols processed is i. Hence | X 1" Mqi-l’ ai)| < ki,
where k is a constant — the maximum length output emitted by the
FST for any single input. Therefore, the total time required to perform
steps (a) and (b) is bounded by ks i, where ks is a constant determined
by the specific technique chosen to implement the tree structure. It
will be useful to suppress such constants and to give time bounds only

as they depend on i and hence on the string length n. We will speak of
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bounds k, n + kg a4 knyq @s being of "order V" or
sirhply as "nN".  As the procedure for updating P must be applied

to each input symbol, the total time required to maintain P is bounded
by nz. (Note that this analysis is quite sloppy; with some care, we can
show that the stated procedure requires only time n. However, for the
purpose of this section, the result claimed will suffice.)

The other parts of the recognizer are implemented in the same
fashion as described by Earley. This implementation is straightfor-
ward, with two exceptions.

(1) In the construction of Si’ it is necessary to test each state
(p,j, g to determine if it is already a member of Si' To save a factor
of i in the time required to make this test, a vector of length i is

used. The fif

entry of this vector points to a list of all states in Si
whose Srd component is f. To determine whether (p, j, g) is in Si’ it is
only necessary to search the gth list.

(2) Erasing rules (i.e., [_) = 0) cause some complications to the
completer step of the algorithm. Consider applying the completer to
the state (p,0,1) € Si' It is necessary to consider all (q, £, g) € Si such
that Cq(£+1) = Dp; some of these may yet to be added to Si’ Therefore,
it is necessary to maintain a record for each A € Si of whether
(A - e) € Pi' As each input symbol is scanned, this record is updated
along with P. (This increases the time required by at most a constant

factor.) For each (p,j,f) added to Si’ if (C — e) € Pi’ then

p(j+1)
(p, j+1, f) is added to S..

A time bound for the recognizer is obtained as follows. Let
Qi = (qi, X, Pi) be a string state for an initial substring a,... a, .
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Define:

di = max number of productions in Pk’
(1sk<i)
m, = max length of longest production in Pk ,
(1<ks<i)
Y. = max number of productions in P, with a common
1 (1<ksi) K

left-hand side.

Clearly, di’ mi, v; are each of order i (i.e., are bounded by ki for
some constant k). In any state set Si’ there are at most dimi(i+l)
states. For each of these, one of the following occurs:

(1) Scanner applies. This adds one state to Si+1 .

(2) Predictor applies. This adds at most r, states to Si'

(3) Completer applies. This adds at most dimii states to Si — but

note that the completer may be applied to at most di- i states.

For each state s added to a state set Si’ it is necessary to check
whether s is already a member of Si' This takes at most dimi steps.

Hence, the total time to process Si is bounded by:

. . . o . 6 T LT
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